Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Training a Neural-Network-Based Surrogate Model for Aerodynamic Optimization Using a Gaussian Process


    Beteiligte:
    Alhazmi, Nahla (Autor:in) / Ghazi, Yousef (Autor:in) / Aldosari, Mohammed N. (Autor:in) / Tezaur, Radek (Autor:in) / Farhat, Charbel (Autor:in)

    Kongress:

    AIAA Scitech 2021 Forum



    Erscheinungsdatum :

    01.01.2021




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    TRAINING A NEURAL-NETWORK-BASED SURROGATE MODEL FOR AERODYNAMIC OPTIMIZATION USING A GAUSSIAN PROCESS

    Alhazmi, Nahla / Ghazi, Yousef / Aldosari, Mohammed N. et al. | TIBKAT | 2021


    Deep Gaussian Process Enabled Surrogate Models for Aerodynamic Flows

    Rajaram, Dushhyanth / Puranik, Tejas G. / Renganathan, Ashwin et al. | AIAA | 2020



    A novel surrogate-based aerodynamic optimization method using field approximate model

    Wang, Wenjie / Wu, Zeping / Wang, Donghui et al. | SAGE Publications | 2019


    CAD-based Aerodynamic Shape Optimization Using Geometry Surrogate Model And Adjoint Methods

    Bobrowski, Kamil / Barnewitz, Holger / Ferrer, Esteban et al. | AIAA | 2016