A method for anisotropic mesh adaptation and optimization for high-order discontinuous Galerkin schemes is presented. Given the total number of degrees of freedom, a metric-based method is proposed, which aims to globally optimize the mesh with respect to the L q norm of the error. This is done by minimizing a suitable error model associated with the approximation space. Advantages of using a metric-based method in this context are several. First, it facilitates changing and manipulating the mesh in a general anisotropic way. Second, defining a suitable continuous interpolation operator allows the use of an analytic optimization framework that operates on the metric field, rather than the discrete mesh. The formulation of the method is presented as well as numerical experiments in the context of convection–diffusion systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mesh Optimization for Discontinuous Galerkin Methods Using a Continuous Mesh Model


    Beteiligte:
    Rangarajan, Ajay (Autor:in) / Balan, Aravind (Autor:in) / May, Georg (Autor:in)

    Erschienen in:

    AIAA Journal ; 56 , 10 ; 4060-4073


    Erscheinungsdatum :

    01.10.2018




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Mesh Adaptation and Optimization for Discontinuous Galerkin Methods Using a Continuous Mesh Model

    Rangarajan, Ajay Mandyam / Balan, Aravind / May, Georg | AIAA | 2016



    Mesh Adaptation and Optimization for Discontinuous Galerkin Methods Using a Continuous Mesh Model (AIAA 2016-2142)

    Rangarajan, Ajay Mandyam / Balan, Aravind / May, Georg | British Library Conference Proceedings | 2016


    ADJOINT-BASED ANISOTROPIC MESH ADAPTATION FOR DISCONTINUOUS GALERKIN METHODS USING A CONTINUOUS MESH MODEL (AIAA 2017-3100)

    Rangarajan, Ajay Mandyam / May, Georg / Dolejsi, Vit | British Library Conference Proceedings | 2017