Recent research in artificial intelligence potentially provides solutions to the challenging problem of fault-tolerant and robust flight control. This paper proposes a novel Safety-Informed Evolutionary Reinforcement Learning algorithm (SERL), which combines Deep Reinforcement Learning (DRL) and neuroevolution to optimize a population of nonlinear control policies. Using SERL, the work has trained agents to provide attitude tracking on a high-fidelity nonlinear fixed-wing aircraft model. Compared to a state-of-the-art DRL solution, SERL achieves better tracking performance in nine out of ten cases, remaining robust against faults and changes in flight conditions, while providing smoother action signals.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Evolutionary Reinforcement Learning: Hybrid Approach for Safety-Informed Fault-Tolerant Flight Control


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.05.2024




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch