This paper presents a new heat-equation-based smoothing homotopy method for solving nonlinear optimal control problems with the indirect method. The surrogates, derived from the heat equation solution, are first incorporated into the necessary conditions as replacement of the terminal state and costate variables. The homotopy process is then applied to the heat conduction time: a longer time results in a more uniform temperature distribution and greater stability against initial temperature variations, thereby making the corresponding homotopy problem much easier to solve; zero time implies no heat conduction and reverts to the original problem. Furthermore, capitalizing on the heat equation’s boundedness characteristic, an efficient approach for determining the hypersensitive parameters is proposed, thus obviating the necessity of manual tuning. Challenging numerical examples are provided to demonstrate the superior performance of the proposed method, indicating that its convergence and efficiency are significantly enhanced compared to the original smoothing homotopy methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Heat-Equation-Based Smoothing Homotopy Method for Nonlinear Optimal Control Problems


    Beteiligte:
    Pan, Binfeng (Autor:in) / Ran, Yunting (Autor:in) / Qing, Wenjie (Autor:in) / Zhao, Mengxin (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.02.2025




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Smoothing Homotopy Methods for Solving Nonlinear Optimal Control Problems

    Pan, Binfeng / Ni, Yang / Ma, Yangyang et al. | AIAA | 2023



    Double-Homotopy Method for Solving Optimal Control Problems

    Pan, Binfeng / Lu, Ping / Pan, Xun et al. | AIAA | 2016


    A New Smoothing Technique for Bang-Bang Optimal Control Problems

    Wang, Kun / Chen, Zheng / Wei, Zhenyu et al. | AIAA | 2024