This work provides a theoretical analysis for optimally solving the pose estimation problem using total-least-squares for vector observations from landmark features, which is central to applications involving simultaneous localization and mapping. First, the optimization process is formulated with observation vectors extracted from point-cloud features. Then, error-covariance expressions are derived. The attitude and position estimates obtained via the derived optimization process are proven to reach the bounds defined by the Cramér–Rao lower bound under the small-angle approximation of attitude errors. A fully populated observation noise-covariance matrix is assumed as the weight in the cost function to cover the most general case of the sensor uncertainty. This includes more generic correlations in the errors than previous cases involving an isotropic noise assumption. The proposed solution is verified using Monte Carlo simulations, a Gazebo simulation in a robotics operating system, and an experiment with an actual light detection and ranging sensor to validate the error-covariance analysis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimal Pose Estimation and Covariance Analysis with Simultaneous Localization and Mapping Applications


    Beteiligte:
    Maleki, Saeed (Autor:in) / Raman, Adhiti (Autor:in) / Cheng, Yang (Autor:in) / Crassidis, John L. (Autor:in) / Schmid, Matthias (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.02.2024




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Optimal Pose Estimation with Error-Covariance Analysis

    Cheng, Yang / Crassidis, John L. | AIAA | 2021


    OPTIMAL POSE ESTIMATION WITH ERROR-COVARIANCE ANALYSIS

    Cheng, Yang / Crassidis, John L. | TIBKAT | 2021


    POSE AND COVARIANCE MATRIX PROPAGATION ISSUES IN COOPERATIVE LOCALIZATION WITH LIDAR PERCEPTION

    Héry, Elwan / Xu, Philippe / Bonnifait, Philippe | British Library Conference Proceedings | 2019



    Deep Learning-Based Covariance Estimation for Relative Pose Measurements

    Ahrabian, Alireza / Nguyen, Quan / Toulios, Nikos et al. | IEEE | 2024