An online pilot manual control behavior identification method, based on recursive low-order time-series model estimation, is presented and validated using experimental data. Eight participants performed compensatory tracking tasks with time-varying vehicle dynamics, where, at an unpredictable moment during a run, a sudden degradation in dynamics could occur. They were instructed to push a button when they detected a change in dynamics. Two methods to automatically detect the moment when pilot adaptation occurs from online estimated parameter traces are discussed. Results show that pilots are more accurate in detecting changes than either algorithm. But when the algorithms are correct, they are often quicker to detect pilot adaptation than pilots themselves. The presented techniques have potential but need improvements.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Online Identification and Detection of Manual Control Adaptation with Recursive Time Series


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.05.2025




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Identification of Time-Varying Manual Control Adaptations with Recursive ARX Models

    van Grootheest, Andries / Pool, Daan M. / van Paassen, Marinus et al. | AIAA | 2018


    Identification of Time-Varying Manual Control Adaptations with Recursive ARX Models (AIAA 2018-0118)

    van Grootheest, Andries / Pool, Daan M. / van Paassen, Marinus et al. | British Library Conference Proceedings | 2018



    An Online Recursive Identification Method over Networks with Random Packet Losses

    Du, Dajun / Shang, Lili / Zhao, Wanqing | Springer Verlag | 2014


    An Online Recursive Identification Method over Networks with Random Packet Losses

    Du, D. / Shang, L. / Zhao, W. | British Library Conference Proceedings | 2014