This study investigates the feasibility of performing orbit plane rotations during aerocapture maneuvers. Three-degrees-of-freedom bounding trajectories at Mars are propagated for a range of vehicle lift-to-drag ratios L / D and hyperbolic arrival velocities v . The results show that the maximum plane rotation achievable increases with vehicle L / D and v . When arriving with v of 6 km/s, vehicles with L / D of 0.25 and 1.0 can achieve plane rotations of up to 11.6 and 45.3 deg, respectively. Heat rate, heat load, and g-loading constraints identified when rotating the orbital plane are not more severe than those observed for two-dimensional aerocapture at a given L / D and v . A direct tradeoff between the maximum plane rotation and entry corridor width exists that will affect the ability of lower L / D vehicles to achieve large plane rotations. The proposed maneuver can allow the captured orbit inclination and right ascension of the ascending node to be altered in ways that are not possible using typical interplanetary orbit targeting methods. Further, the maneuver offers the possibility of deploying multiple satellites to different orbits around a target destination using a single launch or approach path.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Orbit Plane Rotation Using Aerocapture


    Beteiligte:


    Erscheinungsdatum :

    01.01.2025




    Medientyp :

    Aufsatz (Konferenz) , Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Orbit Plane Rotation Using Aerocapture

    Gochenaur, Daniel C. / Jones, Michael / Norheim, Johannes et al. | AIAA | 2025


    Mars orbit injection via aerocapture and low-thrust nonlinear orbit control

    Edoardo Fornari / Mauro Pontani | BASE | 2023

    Freier Zugriff

    Parking Orbit Selection for Mars Aerocapture-Entry Systems

    Zinner, Evan J. / Putnam, Zachary R. | TIBKAT | 2019