This study investigates the feasibility of performing orbit plane rotations during aerocapture maneuvers. Three-degrees-of-freedom bounding trajectories at Mars are propagated for a range of vehicle lift-to-drag ratios and hyperbolic arrival velocities . The results show that the maximum plane rotation achievable increases with vehicle and . When arriving with of 6 km/s, vehicles with of 0.25 and 1.0 can achieve plane rotations of up to 11.6 and 45.3 deg, respectively. Heat rate, heat load, and g-loading constraints identified when rotating the orbital plane are not more severe than those observed for two-dimensional aerocapture at a given and . A direct tradeoff between the maximum plane rotation and entry corridor width exists that will affect the ability of lower vehicles to achieve large plane rotations. The proposed maneuver can allow the captured orbit inclination and right ascension of the ascending node to be altered in ways that are not possible using typical interplanetary orbit targeting methods. Further, the maneuver offers the possibility of deploying multiple satellites to different orbits around a target destination using a single launch or approach path.
Orbit Plane Rotation Using Aerocapture
01.01.2025
Aufsatz (Konferenz) , Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Orbit Plane Rotation Using Aerocapture
AIAA | 2025
|Mars orbit injection via aerocapture and low-thrust nonlinear orbit control
BASE | 2023
|Parking Orbit Selection for Mars Aerocapture-Entry Systems
TIBKAT | 2019
|Concurrent Aerocapture with Orbital Plane Change Using Starbody Waveriders
Online Contents | 2014
|