The performance of two wall models based on Reynolds-averaged Navier–Stokes is compared in large-eddy simulation of a high Reynolds number separating and reattaching flow over the NASA wall-mounted hump. Wall modeling significantly improves flow prediction on a coarse grid where the large-eddy simulation with the no-slip wall boundary condition fails. Low-order statistics from the wall-modeled large-eddy simulation are in good agreement with the experiment. Wall-pressure fluctuations from the resolved-scale solution are in good agreement with the experiment, whereas wall shear-stress fluctuations modeled entirely through the wall models appear to be significantly underpredicted. Although the two wall models produce comparable results in the upstream attached flow region, the nonequilibrium wall model outperforms the equilibrium wall model in the separation bubble and recovery region where the key assumptions in the equilibrium model are shown to be invalid.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Wall-Modeled Large-Eddy Simulation of a High Reynolds Number Separating and Reattaching Flow


    Beteiligte:

    Erschienen in:

    AIAA Journal ; 55 , 11 ; 3709-3721


    Erscheinungsdatum :

    01.11.2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Reynolds Number Sensitivities in Wall-Modeled Large-Eddy Simulation of a High-Lift Aircraft

    Agrawal, Rahul / Whitmore, Michael / Goc, Konrad et al. | AIAA | 2024




    LARGE EDDY SIMULATION OF NATURAL LOW-FREQUENCY OSCILLATIONS OF SEPARATING-REATTACHING FLOW NEAR STALL CONDITIONS

    Alqadi, I. / Almutairi, J. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2012