Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep learning based wheat ears count in robot images for wheat phenotyping,


    Beteiligte:
    Ullah, Ehsan (Autor:in) / Ullah, Mohib (Autor:in) / Sajjad, Muhammad (Autor:in) / Cheikh, Faouzi Alaya (Autor:in)

    Kongress:

    IRIACV ; 2022 ; Online



    Erscheinungsdatum :

    2024



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Development of a Mobile Platform for Wheat Phenotyping

    Pour, Majid Khak / Fotouhi, Reza / Hucl, Pierre | British Library Conference Proceedings | 2020


    Wheat Lodging Segmentation Based on Lstm_PSPNet Deep Learning Network

    Jun Yu / Tao Cheng / Ning Cai et al. | DOAJ | 2023

    Freier Zugriff

    Identification of Wheat Leaf Diseases Based on Deep Learning Algorithms

    Therasa, P. R / R, Hemalatha / Sivajothi, E et al. | IEEE | 2023


    Discrimination of wheat unsound grains based on deep learning and terahertz spectral image technology

    Wang, Fei / Jiang, Yuying / Ge, Hongyi et al. | British Library Conference Proceedings | 2022


    Kinematics Model and Simulation of Precise Wheat-Sowing Robot

    Lin, Hai Bo ;Dong, Shu Liang ;Yi, Chui Jie | Trans Tech Publications | 2012