Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Machine Learning Approach for Vibration Signal Based Fault Classification on Hydraulic Braking System through C4.5 Decision Tree Classifier and Logistic Model Tree Classifier


    Beteiligte:

    Kongress:

    International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility



    Erscheinungsdatum :

    01.01.2020


    Format / Umfang :

    ALL-ALL



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    A Comparative Study with J48 and Random Tree Classifier for Predicting the State of Hydraulic Braking System through Vibration Signals

    Gopalan, Anitha / Arockia Dhanraj, Joshuva / Subramaniam, Mohankumar et al. | SAE Technical Papers | 2021


    A Comparative Study with J48 and Random Tree Classifier for Predicting the State of Hydraulic Braking System through Vibration Signals

    Arockia Dhanraj, Joshuva / Muthiya, S Jenoris / Subramaniam, Mohankumar et al. | British Library Conference Proceedings | 2021


    Bearing Fault Diagnosis Method Based on Graph Fourier Transform and C4.5 Decision Tree

    Wang, Yuze / Qin, Yong / Zhao, Xuejun et al. | British Library Conference Proceedings | 2020


    Bearing Fault Diagnosis Method Based on Graph Fourier Transform and C4.5 Decision Tree

    Wang, Yuze / Qin, Yong / Zhao, Xuejun et al. | Springer Verlag | 2020