Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The accurate recognition system of citrus flowers using YOLOv4-Tiny lightweight neural network and FPGA embedded platform


    Beteiligte:
    Lyu, Shilei (Autor:in) / Zhao, Yawen (Autor:in) / Li, Ruiyao (Autor:in) / Chen, Qiao (Autor:in) / Li, Zhen (Autor:in)

    Kongress:

    International Conference on Mechanical Engineering, Measurement Control, and Instrumentation



    Erscheinungsdatum :

    01.01.2021


    Format / Umfang :

    119302E-119302E-7




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch



    Fast Detection of Railway Fastener Using a New Lightweight Network Op-YOLOv4-Tiny

    Liu, Jianwei / Qiu, Yuan / Ni, Xuefeng et al. | IEEE | 2024


    Improved YOLOv4-tiny network for pedestrian detection

    Fan, Pengbo / Chen, Tingzheng / Zhou, Zongtan et al. | IEEE | 2022


    Low Texture Artifacts Recognition and Visual Servo Position Based on YOLOv4-Tiny

    Lin, Jun / Luo, Jiaguo / Liu, Xianghui et al. | IEEE | 2022


    Ship video detection based on improved YOLOv4-Tiny

    Kong, Liuling / Liu, Xiuwen | SPIE | 2022


    Research on a UAV fine descent system based on improved YOLOv4-tiny

    Liu, Tianli / Wang, Tao / Li, Chunfei et al. | SPIE | 2022