Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Hybrid-Attention-LSTM-Based Deep Convolutional Neural Network to Extract Modal Frequencies from Limited Data Using Transfer Learning


    Beteiligte:

    Kongress:

    40th International modal analysis conference, IMAC



    Erscheinungsdatum :

    01.01.2022


    Format / Umfang :

    8 pages



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch



    Data-Driven Car-Following Modal Based on LSTM Deep Learning Method

    Zou, Jie / Huang, Hongyi / Ma, Leshu et al. | IEEE | 2022


    Structural Damage Detection using Deep Convolutional Neural Network and Transfer Learning

    Feng, Chuncheng / Zhang, Hua / Wang, Shuang et al. | Springer Verlag | 2019


    Pedestrian Trajectory Prediction Based on Deep Convolutional LSTM Network

    Song, Xiao / Chen, Kai / Li, Xu et al. | IEEE | 2021


    Structural Damage Detection using Deep Convolutional Neural Network and Transfer Learning

    Feng, Chuncheng / Zhang, Hua / Wang, Shuang et al. | Online Contents | 2019


    Travel Demand Prediction using Deep Multi-Scale Convolutional LSTM Network

    Chu, Kai Fung / Lam, Albert Y.S. / Li, Victor O.K. | IEEE | 2018