The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A new cellular automaton for signal controlled traffic flow based on driving behaviors


    Beteiligte:
    Wang, Yang (Autor:in) / Chen, Yan-Yan (Autor:in)

    Erschienen in:

    Chinese Physics B ; 24 , 3 ; 038902/1-038902/11


    Erscheinungsdatum :

    2015


    Format / Umfang :

    11 Seiten, 22 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    Traffic Flow Simulation Based on Cellular Automaton Model Considering Driving Mode

    Xiang, Zhengtao / Bao, Juan / Li, Yujin et al. | IEEE | 2013


    One-dimensional cellular automaton traffic flow model based on defensive driving strategy

    Fenghui, Wang / Lingyi, Li / Yongtao, Liu et al. | Taylor & Francis Verlag | 2022


    Analyzing Traffic Flow by a Cellular Automaton

    Emmerich, H. / Rank, E. / German Supercomputing Center HLRZ | British Library Conference Proceedings | 1996


    Cellular Automaton-Based Traffic Flow Simulation Model for Traffic Incidents

    Zhao, Kang-jia / Chen, Shu-yan / Lao, Ye-chun | ASCE | 2015