This paper presents an instantaneous optimization algorithm based on the knowledge of the efficiency maps of the internal combustion engine (ICE) and the generator for the energy management system in hybrid electric vehicles. The proposed method formulates a new cost function representing the analytical expression of the overall energy efficiency of the hybrid energy source (i.e. ICE/generator set + battery pack) which is calculated based on the energy flow at the DC bus. Engine operating points are determined by assessing not only the efficiency map of the engine but also the efficiency map of the generator and the charge/discharge efficiency of the battery pack in order to maximize the efficiency of the energy delivered from the hybrid energy source to the drive system. The performance of the proposed method is analyzed and demonstrated on a hybrid electric bus developed in MATLAB/Simulink for different driving cycle conditions and the results have been compared with alternative optimization methods such as equivalent consumption minimization strategy (ECMS), model predictive control (MPC) and dynamic programming (DP) approach. The simulation results show that the proposed method provides a competitive performance with a lower computational burden compared to the alternative methods for different state of charge (SOC) ranges and drive cycle conditions.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An instantaneous optimization strategy based on efficiency maps for internal combustion engine/battery hybrid vehicles


    Beteiligte:
    Gökce, Kürsad (Autor:in) / Ozdemir, Ayhan (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2014


    Format / Umfang :

    15 Seiten, 40 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    Steady-State Optimization of Internal Combustion Engine for Hybrid Electric Vehicles

    Feng, Wany / Tong, Zhang / Yan-jie, Wang et al. | IEEE | 2006


    Review of flywheel based internal combustion engine hybrid vehicles

    Dhand, A. / Pullen, K. | British Library Online Contents | 2013


    Review of flywheel based internal combustion engine hybrid vehicles

    Dhand, A. / Pullen, K. | Online Contents | 2013


    Review of flywheel based internal combustion engine hybrid vehicles

    Dhand, A. / Pullen, K. | Springer Verlag | 2013