Since compressible methods are well suited for the prediction of cavitating flows, we successfully utilise explicit density-based solvers and evaluate the probability of cavitation erosion by a statistical analysis of the transient wall load. However, the explicit method suffers from extremely high CPU times due to the numerical time step restriction (CFL condition), i.e. the ratio of the cell size and the speed of sound define the time step. Implicit methods do not have such a strict time step restriction. With respect to cavitation erosion, we aim at evaluating the potential of implicit pressure-based methods to save CPU time by systematically increasing the time step. For a NACA0015 hydrofoil we increase the CFL number up to CFL = 2000. We find that the flow field as well as the wall load are only moderately effected by the increased time step size up to CFL = 200. For a plane micro channel flow that is a simplified model of Diesel injection systems, we consider the influence of the outlet pressure on cavitation erosion by a wall load analysis. The result is not significantly effected by an increase of CFL = 1 to CFL = 100. As a conclusion, the increase of the time step size by two orders of magnitude does not change the prediction quality of the wall load significantly. Implicit methods have therefore generally the potential to minimize the CPU time for the prediction of cavitation erosion by a reduction of the number of time steps. In further research, the matrix operations must be optimised to reduce the CPU effort per time step, and we recommend focussing on implicit density-based schemes.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comparison of compressible explicit density-based and implicit pressure-based CFD methods for the simulation of cavitating flows


    Beteiligte:
    Skoda, Romuald (Autor:in) / Iben, Uwe (Autor:in) / Güntner, Martin (Autor:in) / Schilling, Rudolf (Autor:in)


    Erscheinungsdatum :

    2012


    Format / Umfang :

    7 Seiten, 17 Bilder, 1 Tabelle, 6 Quellen




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Datenträger


    Sprache :

    Englisch





    Simulation of Cavitating Flows in Turbopumps

    Ahuja, Vineet / Ungewitter, Ronald / Hosangadi, Ashvin | AIAA | 2003



    Modeling Cavitating Venturi Flows

    Changhai Xu / Stephen D. Heister / Robert Field | AIAA | 2002


    Observations of Cavitating Flows

    Brennen, C. / Office of Naval Research; Mechanics and Energy Conversion S & T Division / National Research Council; Naval Studies Board | British Library Conference Proceedings | 1994