Diesel powered tractors are used to shuttle cargo trailers from point to point within the confines of a port facility, terminal or warehouse yard. Such operations are similar to those in ground support applications at airports and in industrial warehouses with lift trucks, in that the vehicles are used as tools to move goods in a semi-regular pattern. Southern California Edison Company (SCE) and the Electric Power Research Institute (EPRI) have partnered to help electrify vehicle operations in both of those venues with great success and see good prospects for the same at port operations. However, current port operations might require large investments in infrastructure and operational changes to implement electric drive all at once. To help demonstrate the benefits of electric drive without requiring large-scale changes, a plug-in hybrid electric vehicle (PHEV) yard tractor design was proposed by EPRI and member utilities as a means to reduce operational emissions and diesel fuel use. Four member utility companies with large port customers in their service area (SCE, Southern Company, CenterPoint Energy, and New York Power Authority) agreed to work with EPRI to study the benefits and impacts of a PHEV yard tractor. In 2007 the Electric Power Research Institute (EPRI) contracted US Hybrid Corporation (USH) to design and construct a unique PHEV yard tractor. SCE agreed to test and evaluate the PHEV yard tractor for EPRI. To properly evaluate the benefits realized by the yard tractor in comparison to unmodified conventional yard tractors as well as other alternative fueled tractors, SCE had to test the tractor in controlled conditions with realistic loads in addition to field testing. SCE developed test procedures for controlled testing and for field evaluation. The field testing was conducted in four ports across the United States, each with different operating conditions and climate: Long Beach, California; Houston, Texas; Savannah, Georgia; and New York City. SCE designed a test procedure that simulates an accelerated duty cycle of cargo operations. The accelerated duty cycle has multiple starts and stops and little idle time. SCE measured the idling fuel consumption separately so it can be inserted to match the duty cycle of any particular port. The test cycle was performed with the vehicle both unloaded and loaded to profile the effects of load on system efficiencies. SCE also tested the battery and charger performance of the PHEV, and as a comparison, tested an unmodified yard tractor. In the accelerated testing, SCE found the PHEV fuel savings were as high as 60% (on a per-cycle basis) when compared to a stock diesel Kalmar tractor, and up to 35% fuel savings versus operating the PHEV tractor as a hybrid (i.e, not charging it), In charge sustaining operation, the fuel savings are as high as 40% compared to the stock vehicle. On a daily-operation basis, the projected fuel savings on a duty cycle similar to the SCE test cycle could be as low as 35% but as high as 60% with significant amounts of idling and low speed operation. The field test results show good fuel economy but are complicated by reliability issues that reduced the operational time of the prototype PHEV vehicle. Also, it was difficult to get fleet fuel use data. It was the intention in the project to compare the test vehicle's results with the fleet average fuel use per unit time. These results will be discussed in the body of the paper. Port operators, in general, appreciated the engine off mode's reduced noise and exhaust. The US Hybrid prototype PHEV yard tractor has the potential to significantly reduce fuel consumption, as demonstrated in the SCE tests. Performance issues with the prototype prevented full duty in the field tests. Further testing, with a more reliable vehicle incorporating the key system improvements learned from this project, is worth pursuing to determine if the potential fuel savings can be fully realized in larger scale. Furthermore, the techniques and testing methods described can be used for other alternatively-fueled yard tractors.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Heavy-duty PHEV yard tractor: Controlled testing and field results


    Beteiligte:
    Kellogg, Edward (Autor:in) / Smith, Jordan (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2012


    Format / Umfang :

    8 Seiten, 5 Bilder, 8 Tabellen, 4 Quellen



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    HEAVY DUTY TRACTOR CABS

    ENBLOM, JHON C. | SAE Technical Papers | 1954


    YARD TRACTOR WITH REMOTE CONTROLLED REAR ACCESS DOOR

    CLARK STEPHEN / KELLY ROBERT P | Europäisches Patentamt | 2017

    Freier Zugriff

    Yard tractor with remote controlled rear access door

    CLARK STEPHEN / KELLY ROBERT P | Europäisches Patentamt | 2017

    Freier Zugriff

    YARD TRACTOR WITH REMOTE CONTROLLED REAR ACCESS DOOR

    CLARK STEPHEN / KELLY ROBERT P | Europäisches Patentamt | 2015

    Freier Zugriff

    A tractor engine for heavy duty

    Engineering Index Backfile | 1919