The basic principles of a progressive methodology for calculating the fire resistance of reinforced structures, meant for application to high-rise, multifunctional, and unique buildings, are presented. The methodology is universal with respect to materials, types of building structures with fire protection, and different force and heat loads acting on them under the conditions of fire. It permits one to take into account all particularities of the thermomechanical behavior of structures in the case of joint action of thermal and force loads. The solution procedure is based on using high-level mathematical models and universal methods of numerical analysis, i.e., the finite-element method (FEM) and the finite-difference method (FDM). To simplify and reduce the labor content of computational algorithms, a mathematical model of special beam finite element has been developed, which in a natural way takes into account the complex structure of buildings, spatial nonuniformity of temperature fields, and the nonlinear behavior of materials. This procedure allowed us to determine the limits of applicability of the known approximate approach, which is based on the use of the concept of "critical temperature," to the estimation of fire resistance and to the design of fire protection of concrete structures. The procedure has been used in designing a number of unique structures built in Moscow.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Numerical estimation of fire resistance and a flexible design of fire protection for structures made of reinforced materials


    Beteiligte:
    Kaledin, V.O. (Autor:in) / Mitkevich, A.B. (Autor:in) / Strakhov, V.L. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2012


    Format / Umfang :

    12 Seiten




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    FIBER-REINFORCED COMPOSITE MATERIAL WITH IMPROVED FIRE RESISTANCE, AND STRUCTURAL COMPONENT MADE THEREOF

    LUINGE HANS / SCHÜTT MATTHIAS / GIBSON GEOFF | Europäisches Patentamt | 2016

    Freier Zugriff


    Fire protection

    British Library Online Contents | 1998


    Fire protection

    Engineering Index Backfile | 1931


    Fire protection design for shuttle

    Ard, G. F. | NTRS | 1971