The US. Department of Energy Gasoline/Diesel PM Split Study was conducted to assess the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the relative contributions of emissions from gasoline (or spark ignition [SI]) and diesel (or compression ignition [CI]) engines to ambient concentrations of fine particulate matter (PM25) in California's South Coast Air Basin (SOCAB). In this study, several groups worked cooperatively on source and ambient sample collection and quality assurance aspects of the study but worked independently to perform chemical analysis and source apportionment. Ambient sampling included daily 24-hr PM2 5 samples at two air qualitymonitoring stations, several regional urban locations, and along freeway routes and surface streets with varying proportions of automobile and truck traffic. Diesel exhaust was the dominant source of total carbon (TC) and elemental carbon (EC) at the Azusa and downtown Los Angeles, CA, monitoring sites, but samples from the central part of the air basin showed nearly equal apportionments of CI and SI. CI apportionments to TC were mainly dependent on EC, which was sensitive to the analytical method used. Weekday contributions of CI exhaust were higher for Interagency Monitoring of Protected Visual Environments (IMPROVE; 41 3.7%) than Speciation Trends Network (32 2.4%). EC had little effect on SI apportionment. SI apportionments were most sensitive to higher molecular weight polycyclic aromatic hydrocarbons (indeno[123-cd]pyrene, benzo(ghi)perylene, and coronene) and several steranes and hopanes, which were associated mainly with high emitters. Apportionments were also sensitive to choice of source profiles. CI contributions varied from 30% to 60% of TC when using individual source profiles rather than the composites used in the final apportionments. The apportionment of SI vehicles varied from 1% to 12% of TC depending on the specific profile that was used. Up to 70% of organic carbon (OC) in the ambient samples collected at the two fixed monitoring sites could not be apportioned to directly emitted PM emissions.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Evaluations of the chemical mass balance method for determining contributions of gasoline and diesel exhaust to ambient carbonaceous aerosols


    Beteiligte:


    Erscheinungsdatum :

    2007


    Format / Umfang :

    20 Seiten, 10 Bilder, 3 Tabellen, 33 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    Roadway Measurements of Diesel Exhaust Aerosols

    Kittelson, D.B. / Dolan, D.F. | SAE Technical Papers | 1979


    Roadway measurements of Diesel exhaust aerosols

    Dolan,D.F. / Kittelson,D.B. / Univ.of Minnesota,Dep.of Mech.Engng.,US | Kraftfahrwesen | 1979


    Sampling and Physical Characterization of Diesel Exhaust Aerosols

    Kittelson, David A. / Verrant, John A. | SAE Technical Papers | 1977


    Destruction of carbonaceous material and nitrogen oxides in conditions of diesel exhaust

    Gilot,P. / Bonnefoy,F. / Noirot,R. et al. | Kraftfahrwesen | 1993


    Exhaust Emissions of Diesel, Gasoline and Natural Gas Fuelled Vehicles

    Dürnholz, M. / Hupperich, P. | SAE Technical Papers | 1996