Current processing of acoustic array data is burdened with considerable uncertainty. This study reports an original methodology that serves to demystify array results, reduce misinterpretation, and accurately quantify position and strength of acoustic sources. Traditional array results represent noise sources that are convolved with array beamform response functions, which depend on array geometry, size (with respect to source position and distributions), and frequency. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method removes beamforming characteristics from output presentations. A unique linear system of equations accounts for reciprocal influence at different locations over the array survey region. It makes no assumption beyond the traditional processing assumption of statistically independent noise sources. A new robust iterative method seamlessly introduces a positivity constraint (due to source independence) that makes the equation system sufficiently deterministic. DAMAS is quantitatively validated using archival data from a variety of prior high-lift airframe component noise studies, including flap edge/cove, trailing edge, leading edge, slat, and calibration sources. Presentations are explicit and straightforward, as the noise radiated from a region of interest is determined by simply summing the mean-squared values over that region. DAMAS can fully replace existing array processing and presentations methodology in most applications. It appears to dramatically increase the value of arrays to the field of experimental acoustics.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays


    Weitere Titelangaben:

    Ein Entfaltungsverfahren für das Mapping von aus phasengleichen Mikrophonarrays bestimmten Schallquellen (DAMAS)


    Beteiligte:

    Erschienen in:

    Journal of Sound and Vibration ; 294 , 4/5 ; 856-879


    Erscheinungsdatum :

    2006


    Format / Umfang :

    24 Seiten, 17 Bilder, 22 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch