The near-net-shape forging of high strength nickel base superalloys 718 and 720 for aircraft parts requires the usage of finite element simulations to ensure a proper thermo-mechanical treatment. Because of the high mechanical requirements and narrow specifications of such parts not only a correct, defect free final geometry is necessary, but also a defined microstructure. The crucial point is therefore, to control all process parameters in a way to achieve the demanded properties. The typical forging processes like hydraulic, screw press and hammer forging imply a broad spectrum of strain rates. The influence of these different strain rates as well as forging temperature and strain on dynamic and post-dynamic recrystallization have been examined experimentally. Annealing tests at various temperatures and time periods have been performed, to investigate static recrystallization and grain growth behavior as well as dissolution processes during heating periods. The obtained data was used to build phenomenological models, which were implemented into a finite element code of a commercial special purpose finite element program. 2D and 3D Simulations of multiple step thermo-mechanical processes are compared with microstructure examinations of forged parts to show the usability and accuracy of such models as a tool to optimize complex forging processes of critical aircraft parts. In combination with systematic process data collection during production a stable processes and satisfactory mechanical product properties are guaranteed.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Optimizing the forging of critical aircraft parts by the use of finite element coupled microstructure modeling


    Weitere Titelangaben:

    Optimierung des Schmiedens von kritischen Flugzeugteilen durch Anwendung der Finite-Elemente-Methode gekoppelt mit der Mikrogefügemodellierung


    Beteiligte:


    Erscheinungsdatum :

    2005


    Format / Umfang :

    9 Seiten, 6 Bilder, 10 Quellen


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Reducing forging cost through finite-element analysis

    Rebelo,N. / Marc Analysis Research,GB | Kraftfahrwesen | 1987


    Optimizing Gas-Turbine Operation using Finite-Element CFD Modeling

    Rajanna, Manoj R. / Xu, Fei / Hsu, Ming-Chen et al. | AIAA | 2018



    Finite Element Modeling Strategies for Dynamic Aircraft Seats

    Lankarani, Hamid / Bhonge, Prasannakumar | SAE Technical Papers | 2008


    Maintenance scheduling for critical parts of aircraft

    Fard, N.S. / Melachrinoudis, E. | Tema Archiv | 1991