Few, distributed software-implemented fault tolerance (SIFT) environments have been experimentally evaluated using substantial applications to show that they protect both themselves and the applications from errors. We present an experimental evaluation of a SIFT environment used to oversee spaceborne applications as part of the Remote Exploration and Experimentation (REE) program at the Jet Propulsion Laboratory. The SIFT environment is built around a set of self-checking ARMOR processes running on different machines that provide error detection and recovery services to themselves and to the REE applications. An evaluation methodology is presented in which over 28,000 errors were injected into both the SIFT processes and two representative REE applications. The experiments were split into three groups of error injections, with each group successively stressing the SIFT error detection and recovery more than the previous group. The results show that the SIFT environment added negligible overhead to the application's execution time during failure-free runs. Correlated failures affecting a SIFT process and application process are possible, but the division of detection and recovery responsibilities in the SIFT environment allows it to recover from these multiple failure scenarios. Only 28 cases were observed in which either the application failed to start or the SIFT environment failed to recognize that the application had completed. Further investigations showed that assertions within the SIFT processes-coupled with object-based incremental checkpointing-were effective in preventing system failures by protecting dynamic data within the SIFT processes.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Effects of an ARMOR-based SIFT environment on the performance and dependability of user applications


    Beteiligte:
    Whisnant, K. (Autor:in) / Iyer, R.K. (Autor:in) / Kalbarczyk, Z.T. (Autor:in) / Jones, P.H. III (Autor:in) / Rennels, D.A. (Autor:in) / Some, R. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2004


    Format / Umfang :

    21 Seiten, 38 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    Armor/Anti-Armor Team Tactical Performance

    T. D. Scott / L. L. Meliza / G. D. Hardy et al. | NTIS | 1979


    A User-Friendly Dependability Evaluation Tool

    Hecht, H. / Tai, A. T. / Trivedi, K. S. et al. | British Library Conference Proceedings | 1996


    Dependability

    Firth, J. / Railway Industry Association | British Library Conference Proceedings | 1998


    Dependability

    Firth, J. / Railway Industry Association | British Library Conference Proceedings | 1996


    Refractory armor in structural applications

    Hauck, E.W. | Engineering Index Backfile | 1967