Filamentous algae fouling, such as Enteromorpha clathrata, is a soft and hairylike roughness that sometimes grows even thicker than a normal boundary layer. Typically, such fouling has been treated as traditional roughness functions to yield hydrodynamic characteristics. This technique has been successfully used for a thin fouling layer. However, it may not be applicable on a thicker layer, as the present study found substantial fluid flow within the layer. For such cases, the roughness cannot be treated simply as a passive geometric variable, but its kinematics and interactions with the flow must be considered. The inner law (log law) dynamics may be abnormal to yield any meaningful roughness function if it is calculated in the traditional way as the departure of a rough-wall log law profile over a smooth-wall log law profile. In the present research, velocity measurement of the E. clathrata roughness boundary layer using pitot-static tube and laser Doppler velocimeter (LDV) were compared. Large discrepancies in the velocity profiles within and in the vicinity of the roughness layer were observed between the two methods. The pitot-static tube data showed significantly high velocities (60% to 80% of the free stream) in the inner layer as compared to a smooth wall boundary layer. This local increase in velocity is believed to be the result of elastic transfer of free-stream energy to the near-wall motions by the E. clathrata filaments. Consequently, the usual assumption of the normal pressure gradient as a negligible second-order term for a normal zero-pressure gradient boundary layer may not be valid for the present kind of roughness . The LDV velocity measurements near and within the roughness layer have large uncertainties due to interference of the probe volume by the E. clathrata filaments. Above the roughness, the pitot-static tube and LDV profiles show relatively good agreement. It is concluded that for accurate prediction of the wall shear stress with E. clathrata-type of bio-fouling roughness, the Clauser velocity loss function should include a form drag factor instead of only the viscous drag factor.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A study of hydrodynamic characteristics of boundary layer with algae roughness


    Weitere Titelangaben:

    Eine Untersuchung der hydrodynamischen Kennwerte einer Grenzschicht mit Algen-Rauigkeit


    Beteiligte:
    Subramanian, C.S. (Autor:in) / Shinjo, N. (Autor:in) / Gangadharan, S.N. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2004


    Format / Umfang :

    7 Seiten, 10 Bilder, 1 Tabelle, 26 Quellen



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch