In this paper, we explore the notion that a human driver uses a receding horizon model predictive control (MPC) scheme for minimum-time manoeuvering. However, MPC is an inherently sub-optimal control scheme because not all future information is incorporated into its finite preview horizon. In many practical applications, this sub-optimality is tolerated as the solution is sufficiently close to optimal. However, it is known that professional drivers have the ability to learn driving circuits and exploit its features to minimise their global manoeuvering time. In this paper, we will model their process with a cascaded optimisation structure. Therein, the inner-loop features a local MPC scheme tasked with finding the control inputs that achieve a blended objective of minimising time and maximising velocity in each preview horizon/distance. The outer loop of this cascaded structure computes the best set of weights for the two components of the local objectives in order to minimise the global manoeuvering time. The proposed cascaded optimisation and control approach is compared against a straight-forward fixed-cost time optimal MPC applied to minimum-time manoeuvering over two well-known race courses. The paper also includes an extended literature review and details of the computational formulation of the model approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modelling minimum-time manoeuvering with global optimisation of local receding horizon control


    Beteiligte:

    Erschienen in:

    Vehicle System Dynamics ; 56 , 10 ; 1508-1531


    Erscheinungsdatum :

    2018-10-03


    Format / Umfang :

    24 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    RECEDING HORIZON STATE ESTIMATOR

    AHN HEEJIN / DANIELSON CLAUS | Europäisches Patentamt | 2021

    Freier Zugriff

    Receding Horizon State Estimator

    AHN HEEJIN / DANIELSON CLAUS | Europäisches Patentamt | 2021

    Freier Zugriff