The acceleration resistance of a vessel advancing in shallow water is investigated. Four acceleration intensities and two water depths are modelled using the CFD and potential flow methods. The results show a pronounced peak in resistance exists near the critical depth Froude number, but its location and magnitude are sensitive to the acceleration intensity and water depth. Excellent agreement between the results obtained from the CFD and potential flow methods is found in the low and high depth Froude number ranges regardless of water depth or acceleration, indicating that linear and unsteady methods can provide robust results at a low cost in those ranges. The magnitude of the resistance peak and its position are sensitive to nonlinear effects, evidenced by slight disagreements between the two adopted methodologies. The variation in the results produced by the two solvers is found to be sensitive to the parameters investigated.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    The resistance of a trans-critically accelerating ship in shallow water


    Beteiligte:
    Terziev, Momchil (Autor:in) / Liu, Yihan (Autor:in) / Yuan, Zhiming (Autor:in) / Incecik, Atilla (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2024-01-02


    Format / Umfang :

    19 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Ship resistance in flowing, shallow water

    Völker, H. | IOS Press | 1958


    Ship resistance in flowing, shallow water

    Voelker, H. | Engineering Index Backfile | 1958


    Ship-ship interaction in shallow water

    Dand, I. W. | TIBKAT | 1977



    Ship waves in shallow water

    Jiang,T. / Univ.Hamburg,DE / Univ.Duisburg,DE | Kraftfahrwesen | 2001