This paper proposes a convex programming method to design midcourse trajectory for intercepting a missile during the boost phase. The intercept scenario consists of an air-launched interceptor and a three-stage missile. Dynamics models of interceptor and target are established respectively. The specific constraints in boost phase intercept are analyzed and considered in the model. The trajectory design is solved as a convex programming problem. Based on model predictive theory, nonlinear dynamics equations can be translated into the relation between state increments and input corrections. The relation can be considered as a linear equal constraint. And the flight constraints are processed to satisfy convex form via linear approximations. A cost function which can optimize the control effort and smooth commands is selected to develop a complete convex programming framework. The influence of different initial values on the programming results is analyzed. Finally, numerical simulations have demonstrated the effectiveness of the midcourse trajectory design method proposed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Design of Midcourse Trajectory for Boost Phase Interception


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Yu, Xiang (Herausgeber:in) / Yang, Biao (Autor:in) / Jing, Wuxing (Autor:in) / Gao, Changsheng (Autor:in)


    Erscheinungsdatum :

    2021-10-30


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Design of Midcourse Trajectory for Boost Phase Interception

    Yang, Biao / Jing, Wuxing / Gao, Changsheng | TIBKAT | 2022




    Energy Optimal Midcourse Guidance Law Design Based on Predicted Interception Point

    Fang, Yi / Ludan, Li / Yaosheng, Hu | Springer Verlag | 2021