Due to the complex canyon topography in southwestern regions of China, several multi-main-span high pier continuous rigid-frame bridges (MHPCRFBs) are built to meet the special terrain. Owing to the great effect of high-order modes, the seismic responses of MHPCRFBs are more complicated than the conventional signal main span continuous rigid-frame bridges. However, there has been very limited researches focus on the seismic vulnerability of MHPCRFBs. This study selects a practical five-span (three main span) high pier continuous rigid-frame bridge as a study object to investigate the seismic vulnerability of MHPCRFBs under near-field pulse-like seismic wave excitation. And a finite element model of the example bridge is built by OpenSees incorporating the influence of abutment, and simultaneously 100 near-field pulse-like seismic waves are chosen to research their effect on the seismic vulnerability of the MHPCRFB. The dynamic nonlinear time-history analyses are carried out to record the peak demand values of the example bridge under three seismic excitation calculation cases (longitudinal earthquake, biaxial earthquake, and triaxial earthquake). Thirty-three intensity measures are compared with respect to two statistical parameters including correlation efficient and root mean square error, the peak ground velocity (PGV) turns out to be the optimal intensity measure for seismic vulnerability analysis of MHPCRFB. Subsequently, by using the analysis procedures of the cloud method, the seismic vulnerability curves of MHPCRFB are developed and compared. The results of this study show that the bottom and top areas of the high piers are more fragile at the slight and moderate damage stages along longitudinal direction, and only the bottom areas are prone to damage along transverse direction. And the seismic wave excitation directions have an obvious influence on the seismic damage probability of the MHPCRFB. In addition, the zone with larger failure probabilities of the lower pier is significantly longer than the higher pier. The obtained results provide helpful reference for the seismic-resistant design and consolidation of MHPCRFBs, shed light on the lower pier of MHPCRFBs should be paid high concern to the anti-seismic design.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Seismic Vulnerability Analysis of Multi-main-span High Pier Continuous Rigid-frame Bridge in Terms of Cloud Method


    Weitere Titelangaben:

    KSCE J Civ Eng


    Beteiligte:
    Zhao, Jingang (Autor:in) / Jia, Hongyu (Autor:in) / Zhan, Yulin (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2023-06-01


    Format / Umfang :

    16 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch