This paper presents a navigation system for autonomous rendezvous, proximity operations, and docking (RPOD) with respect to non-cooperative space objects using a novel velocimeter light detection and ranging (LIDAR) sensor. Given only raw position and Doppler velocity measurements, the proposed methodology is capable of estimating the six degree-of-freedom (DOF) relative velocity without any a priori information regarding the body of interest. Further, the raw Doppler velocity measurement field directly exposes the body of interest’s center of rotation (i.e. center of mass) enabling precise 6-DOF pose estimation if the rate estimates are fused within a Kalman filter architecture. These innovative techniques are computationally inexpensive and do not require information from peripheral sensors (i.e. gyroscope, magnetometer, accelerometer etc.). The efficacy of the proposed algorithms were evaluated via emulation robotics experiments at the Land, Air and Space Robotics (LASR) laboratory at Texas A&M University. Although testing was completed with a single body of interest, this approach can be used to online estimate the 6-DOF relative velocity of any amount of non-cooperative bodies within the field-of-view.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    VELOCIMETER LIDAR-BASED RELATIVE RATE ESTIMATION FOR AUTONOMOUS RENDEZVOUS, PROXIMITY OPERATIONS, AND DOCKING APPLICATIONS


    Beteiligte:
    Sandnas, Matt (Herausgeber:in) / Spencer, David B. (Herausgeber:in) / Adams, Davis (Autor:in) / Majji, Manoranjan (Autor:in)


    Erscheinungsdatum :

    2024-01-01


    Format / Umfang :

    15 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Vision-based relative pose estimation for autonomous rendezvous and docking

    Kelsey, J.M. / Byrne, J. / Cosgrove, M. et al. | IEEE | 2006




    Velocimeter LIDAR Based Bulk Velocity Estimation for Terrain Relative Navigation Applications

    Skulsky, Eli / San Martin, Alejandro / Kulkarni, Tejas et al. | NTRS | 2022


    Velocimeter LIDAR-Based Bulk Velocity Estimation for Terrain Relative Navigation Applications

    Adams, Davis W. / Majji, Manoranjan / Urdahl, Sarah et al. | TIBKAT | 2022