Tensegrity robots, which are composed of compressive elements (rods) and flexible tensile elements (e.g., cables), have a variety of advantages, including flexibility, low weight, and resistance to mechanical impact. Nevertheless, the hybrid soft-rigid nature of these robots also complicates the ability to localize and track their state. This work aims to address what has been recognized as a grand challenge in this domain, i.e., the state estimation of tensegrity robots through a marker-less, vision-based method, as well as novel, on-board sensors that can measure the length of the robot’s cables. In particular, an iterative optimization process is proposed to track the 6-DoF pose of each rigid element of a tensegrity robot from an RGB-D video as well as endcap distance measurements from the cable sensors. To ensure that the pose estimates of rigid elements are physically feasible, i.e., they are not resulting in collisions between rods or with the environment, physical constraints are introduced during the optimization. Real-world experiments are performed with a 3-bar tensegrity robot, which performs locomotion gaits. Given ground truth data from a motion capture system, the proposed method achieves less than 1 cm translation error and 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ $$\end{document} rotation error, which significantly outperforms alternatives. At the same time, the approach can provide accurate pose estimation throughout the robot’s motion, while motion capture often fails due to occlusions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    6N-DoF Pose Tracking for Tensegrity Robots


    Weitere Titelangaben:

    Springer Proceedings in Advanced Robotics


    Beteiligte:
    Billard, Aude (Herausgeber:in) / Asfour, Tamim (Herausgeber:in) / Khatib, Oussama (Herausgeber:in) / Lu, Shiyang (Autor:in) / Johnson, William R. (Autor:in) / Wang, Kun (Autor:in) / Huang, Xiaonan (Autor:in) / Booth, Joran (Autor:in) / Kramer-Bottiglio, Rebecca (Autor:in) / Bekris, Kostas (Autor:in)

    Kongress:

    The International Symposium of Robotics Research ; 2022 ; Geneva, Switzerland September 25, 2022 - September 30, 2022


    Erschienen in:

    Robotics Research ; Kapitel : 10 ; 136-152


    Erscheinungsdatum :

    2023-03-08


    Format / Umfang :

    17 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    MULTI-CABLE ACTUATION FOR ENERGY-EFFICIENT TENSEGRITY ROBOTS

    AGOGINO ALICE M / CERA BRIAN M / THOMPSON ANTHONY ALLAN | Europäisches Patentamt | 2023

    Freier Zugriff

    MODULAR ROD-CENTERED, DISTRIBUTED ACTUATION AND CONTROL ARCHITECTURE FOR SPHERICAL TENSEGRITY ROBOTS

    CHEN LEE-HUANG / KHADERI AZHAR / LIM ALEXANDER Y et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    MODULAR ROD-CENTERED, DISTRIBUTED ACTUATION AND CONTROL ARCHITECTURE FOR SPHERICAL TENSEGRITY ROBOTS

    CHEN LEE-HUANG / KHADERI AZHAR / LIM ALEXANDER Y et al. | Europäisches Patentamt | 2018

    Freier Zugriff

    A method to generate stable, collision free configurations for tensegrity based robots

    Hernàndez, Sergi / Mirats-Tur, Josep M. | BASE | 2008

    Freier Zugriff

    Deployable Tensegrity Masts

    Tibert, G. / Pellegrino, S. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2003