Aerodynamic rolling moment on a core-alone launch vehicle due to the presence of a wire tunnel and the associated roll dynamics has been studied. Computational Fluid Dynamics (CFD) simulations across the roll angles from ϕ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} to 180 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} and across the Mach number range indicated the wire tunnel to be the major cause of the rolling moment. A passive means of roll moment reduction has been proposed by adding dummy wire tunnels symmetrically around the vehicle. It was found that adding one dummy wire tunnel diagonally opposite to the existing wire tunnel did not reduce the peak rolling moment as the leeward wire tunnel is ineffective. However, adding two dummy wire tunnels reduced the rolling moment substantially. Addition of the third dummy wire tunnel was also helpful in reducing the rolling moment further, though marginally. In addition to the CFD studies, the maximum roll rates and roll errors of the different configurations have been compared through roll dynamic simulations. A novel linear superposition methodology has been proposed and validated to obtain the rolling moment coefficient for multiple wire tunnel configurations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Passive Reduction of Aerodynamic Rolling Moment for a Launch Vehicle

    Priyadarshi, Pankaj / Sachdeva, Amit / Joseph, Leya | TIBKAT | 2021


    Reduction of aerodynamic lift force and rolling moment on road vehicles

    Rose, M. J. / Motor Industry Research Association | TIBKAT | 1977



    Launch vehicle aerodynamic flight test results

    Gaines, L. M. / Osborn, W. L. / Wiltse, P. D. | NTRS | 1983


    Aerodynamic Characterization of a Modern Launch Vehicle

    Hall, Robert / Holland, Scott / Blevins, John | AIAA | 2011