Despite the ever-increasing studies on active suspensions, most of which illustrate significant improvements over the conventional suspension systems, there have been only a few recent real-life applications in modern production vehicles. The drawbacks of high cost, added weight, added power requirement, and difficulty of maintenance which require specialized tools and technicians, have constrained these applications to the luxury vehicles.

    This work focuses on comparing the performance of three different active suspension architectures with each other: Linear motors at the front suspensions, linear motors at the rear suspensions, and linear motors at both front and rear suspensions in an attempt to see if a compromise solution can be found. The aim is to investigate if, in view of the benefits of decreased weight, power requirement, and increased cost efficiency, the somewhat reduced but still achievable improvements in the cases of front or rear-only active suspensions can still be a viable solution.

    In the comparison of the three alternatives, state feedback control considering signal delays and control allocation techniques have been used. The control objectives are set as ride comfort improvement on straight-line driving, braking distance improvement during ABS braking and roll angle mitigation during high-speed steering. Simulation results are assessed and quantified with respect to decisive vehicle dynamics variables, such as sprung mass acceleration, braking distance, reference yaw rate tracking, sideslip angle and roll angle, and conclusions are drawn on benefits of using each three architecture considered. The all active suspension comes out to be the best in ride comfort improvement, braking distance improvement and roll angle mitigation as expected, but the improvements provided by front and rear active suspension architectures in braking distance improvement and roll angle mitigation respectively, are still satisfactory.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comparison of the Performance of Different Active Suspension Architectures Equipped with Linear Electric Motors


    Weitere Titelangaben:

    Lect.Notes Mechanical Engineering


    Beteiligte:
    Orlova, Anna (Herausgeber:in) / Cole, David (Herausgeber:in) / Bayar, Kerem (Autor:in) / Büyüker, Banu Çiçek (Autor:in)

    Kongress:

    The IAVSD International Symposium on Dynamics of Vehicles on Roads and Tracks ; 2021 August 17, 2021 - August 19, 2021



    Erscheinungsdatum :

    2022-08-06


    Format / Umfang :

    19 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Performance Comparison of Electrical Motors equipped with slightly Asymmetrical Windings

    Caruso, Massimo / Cecconi, Vittorio / Di Tommaso, Antonino Oscar et al. | IEEE | 2019


    Linear electric motors

    Laithwaite, E. | Tema Archiv | 1974


    SUSPENSION REAR AXLE COMPRISING TWO ELECTRIC MOTORS

    ZIECH JAMES F | Europäisches Patentamt | 2017

    Freier Zugriff

    Suspension rear axle comprising two electric motors

    ZIECH JAMES F | Europäisches Patentamt | 2021

    Freier Zugriff

    SUSPENSION REAR AXLE COMPRISING TWO ELECTRIC MOTORS

    ZIECH JAMES F | Europäisches Patentamt | 2019

    Freier Zugriff