Safe planetary landing is considered a key technology for future robotic and manned planetary landing missions. The relay hazard detection and proportion–integration–differentiation avoidance guidance algorithms were used in Chang’e-3 mission, which not only increased the complexity of the guidance system, but also resulted in non-fuel-optimal avoidance guidance from the viewpoint of fuel consumption. To further develop and improve the hazard detection and avoidance scheme of Chang’e-3, novel autonomous hazard avoidance methodologies should be investigated. This paper addresses an innovative hazard detection and avoidance scheme for safe lunar landing from the following three aspects: imaging flash lidar based hazard detection, safe landing site selection strategy, and minimum-fuel hazard avoidance guidance. First, the three-dimensional imaging flash lidar, a developing three-dimensional imaging sensor, is utilized to rapidly and precisely detect three-dimensional terrain of the landing area. Second, the hazard detection and optimum landing site selection strategy inherited from Chang’e-3 are improved and enhanced to estimate the potential obstacles, and select an optimum landing site which is the guidance target of following hazard avoidance. Next, the fuel-optimal hazard avoidance guidance problem is transcribed into as a minimum-fuel consumption optimization problem using the Gauss pseudospectral method, which is easily solved by the open-source software GPOPS. Finally, the validity of the autonomous hazard detection and avoidance guidance scheme proposed in this paper is confirmed by computer simulation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Innovative hazard detection and avoidance guidance for safe lunar landing


    Beteiligte:
    Jiang, Xiuqiang (Autor:in) / Li, Shuang (Autor:in) / Tao, Ting (Autor:in)


    Erscheinungsdatum :

    2016-09-01


    Format / Umfang :

    18 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Analysis of On-Board Hazard Detection and Avoidance for Safe Lunar Landing

    Johnson, Andrew E. / Huertas, Andres / Werner, Robert A. et al. | IEEE | 2008


    Analysis of On-board Hazard Detection and Avoidance for Safe Lunar Landing

    Johnson, Andrew E. / Huertas, Andres / Werner, Robert A. et al. | NTRS | 2008