The purpose of this study is to perform numerical simulation for the design and optimization of three-dimensional magnetohydrodynamic (MHD) controlled hypersonic inlets. An airframe/propulsion integrated module was first established for a waverider-based hypersonic vehicle at design Mach number of 6. Using this generic configuration, an MHD-based technique for large-scale inlet flow control is studied at the off-designed Mach value of 8.5. The results indicate that the inlet mass flowrate can act as an optimization criterion. Using a proper value of mass flowrate, an MHD generator possessing reasonable design parameters can effectively restore the flow field shock structure, i.e. shock-on-lip condition and improves the flow field characteristics at the combustor entrance at higher Mach number than the design value. The results further reveal that the MHD effect on the flow with higher load factor helps to extract more electric power from the external MHD generator and also helps in improving the performance of the combustor entrance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Three-dimensional design and numerical simulation of magnetohydrodynamic controlled hypersonic inlets


    Beteiligte:
    Lu, H (Autor:in) / Cao, D (Autor:in)


    Erscheinungsdatum :

    2012-08-01


    Format / Umfang :

    12 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    Three dimensional hypersonic inlets - Low speed performance

    ANDERSON, MARK / ORTWERTH, PAUL | AIAA | 1991



    Numerical Analysis and Optimization of Two Dimensional Hypersonic Inlets

    Hasegawa, S. / Knight, D. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2004


    Numerical simulation of hypersonic magnetohydrodynamic flows

    Hoffmann, Klaus / Damevin, Henri-Marie / Dietiker, Jean-Francois | AIAA | 2000