Despite significant progress made in the past 20 years in discovering some of the mechanisms of brake squeal, it remains difficult to predict the underlying friction-induced instabilities reliably. Most numerical analyses are based on linear deterministic analyses of structural vibrations such as the complex eigenvalue analysis (CEA). However, nonlinear multi-scale processes govern friction contact with high sensitivities to operating and/or environmental conditions. In addition, uncertainties in the material properties and boundary conditions such as contact and friction laws are rarely considered. Hence, it is quite common to underpredict or overpredict the number of instabilities and extensive brake noise dynamometer tests are still required in industry to ensure acceptable brake noise performance. In this paper, simplified finite element brake models are used to illustrate the role of nonlinearity in brake squeal. By using nonlinear time series analyses, forced response calculations, dissipated friction work and acoustic radiations, unstable pad modes have been found to be responsible for the instantaneous mode squeal which, although observed experimentally, cannot be predicted with the traditional linear CEA. By considering coupled spring-mass-damper oscillators representing a pad on a sliding plate, the role of uncertainties of contact stiffness and friction laws in brake squeal is examined using probabilities of the positive real part of complex eigenvalues and positive friction work. The implications of nonlinearity and uncertainty for brake squeal predictions are discussed. Suggestions on how the new insights gained into nonlinearities and uncertainties can be exploited for practical brake squeal analyses in industry are proposed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Role of Nonlinearity and Uncertainty in Assessing Disc Brake Squeal Propensity


    Weitere Titelangaben:

    Sae International Journal of Passenger Cars. Mechanical Systems
    Sae Int. J. Passeng. Cars - Mech. Syst


    Beteiligte:
    Lai, Joseph CS (Autor:in) / Oberst, Sebastian (Autor:in) / Zhang, Zhi (Autor:in)

    Kongress:

    9th International Styrian Noise, Vibration & Harshness Congress: The European Automotive Noise Conference ; 2016



    Erscheinungsdatum :

    2016-06-15


    Format / Umfang :

    7 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Disc Brake Squeal

    Tarter,J.H. / Bendix,Automot.Mater.Technol.Cent.,US | Kraftfahrwesen | 1983


    Disc Brake Squeal

    Tarter, James H. | SAE Technical Papers | 1983


    Disc brake squeal

    Tarter, J.H. | Tema Archiv | 1983


    Automotive disc brake squeal

    Kinkaid, N.M. | Online Contents | 2003


    TGV disc brake squeal

    Lorang, X. | Online Contents | 2006