Today, multi-hole Diesel injectors can be mainly characterized by three different nozzle hole shapes: cylindrical, k-hole, and ks-hole. The nozzle hole layout plays a direct influence on the injector internal flow field characteristics and, in particular, on the cavitation and turbulence evolution over the hole length. In turn, the changes on the injector internal flow correlated to the nozzle shape produce immediate effects on the emerging spray.In the present paper, the fluid dynamic performance of three different Diesel nozzle hole shapes are evaluated: cylindrical, k-hole, and ks-hole. The ks-hole geometry was experimentally characterized in order to find out its real internal shape.First, the three nozzle shapes were studied by a fully transient CFD multiphase simulation to understand their differences in the internal flow field evolutions. In detail, the attention was focused on the turbulence and cavitation levels at hole exit. The adopted simulation strategy was previously validated against experimental data.Finally, the fluid dynamic conditions collected at nozzle exit by the multiphase simulations were used to initialize Lagrangian spray simulations carried out at constant-volume conditions. The computed spray patterns were compared to find out correlations between the tested nozzle layouts and the overall spray characteristics.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Influence of Cylindrical, k, and ks Diesel Nozzle Shape on the Injector Internal Flow Field and on the Emerging Spray Characteristics


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    SAE 2014 World Congress & Exhibition ; 2014



    Erscheinungsdatum :

    2014-04-01




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Predicting Diesel Injector Nozzle Flow Characteristics

    Mulemane, A. / Lai, M.-C. | British Library Conference Proceedings | 2004


    Predicting Diesel Injector Nozzle Flow Characteristics

    Mulemane, Aditya / Lai, Ming-Chia | SAE Technical Papers | 2004


    Diesel injector elasticity effects on internal nozzle flow

    Hwang, Joonsik / Manin, Julien / Yasutomi, Koji et al. | SAE Technical Papers | 2019


    Diesel injector elasticity effects on internal nozzle flow

    Yasutomi, Koji / Hwang, Joonsik / Manin, Julien et al. | British Library Conference Proceedings | 2019


    Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

    Sforzo, Brandon / Powell, Christopher F. / Hwang, Joonsik et al. | SAE Technical Papers | 2020