To understand how the composition of novel lubricant additives and their ash interact with gasoline particulate filters (GPFs), an accelerated aging protocol was conducted using three lubricant additive formulations and two GPF types. The additive packages (adpaks) consisted of Ca+Mg detergent in a 3:1 or 0:1 ratio and an anti-wear component—either zinc dialkyl dithiophosphate (ZDDP) or a novel phosphonium-phosphinate ionic liquid (IL) substitute. The particulate sampling captured amount/compositions of particulate matter (PM) generated, total particulate number, and size distribution. Five ash loadings were completed. GPF position and adpak composition affected the backpressure, ash composition, ash morphology, and captured mass. The particulate sampling indicated that the ash component consisted primarily of particles less than 50 nm in size and that the Mg-only adpak resulted in more particulate of 50–400 nm in size. Postmortem materials characterization indicated GPFs in the underfloor position had deeper penetration of ash into the walls compared to the close-coupled position. Additionally, the Mg-only adpak had a higher filter collection efficiency (>90%) and the ash particles consisted of a higher concentration of dense ash material. In contrast, four of the 3:1 Ca:Mg lubricant adpaks resulted in a collection efficiency of only 40–50%. Although the collection efficiency was higher with the Mg-only adpak, the ash layer in the GPF was not thicker, nor was the penetration into the wall more significant, and surprisingly the full useful life (FUL) backpressure was lower than with Ca:Mg adpaks. The higher density of the Mg-derived ash was the only detectable difference. A possible explanation of this observation is that Mg ash has a lower melting point and is more susceptible to densification during combustion or GPF regeneration. The substitution of IL in place of the ZDDP did not lead to any notable changes in collection efficiency or location of the ash.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Investigation of Lubricant Additive Interactions on Gasoline Particulate Filters


    Weitere Titelangaben:

    Sae Int. J. Fuels Lubr
    Sae International Journal of Fuels and Lubricants


    Beteiligte:
    Ritchie, Andrew (Autor:in) / Gangopadhyay, Arup (Autor:in) / Kaul, Brian C. (Autor:in) / Lambert, Christine (Autor:in) / Dobson, Douglas (Autor:in) / Luo, Huimin (Autor:in) / Qu, Jun (Autor:in) / Maricq, Matti (Autor:in) / Moses-DeBusk, Melanie (Autor:in) / Lance, Michael J. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2023-04-07


    Format / Umfang :

    14 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Modeling Coated Gasoline Particulate Filters

    Walter, Raimund Mathias Heinz | TIBKAT | 2023

    Freier Zugriff

    Particulate Filters for DI Gasoline Engines

    Dr.-Ing. Boger, Thorsten / Dr. Gunasekaran, Natarajan / Bhargava, Rajesh et al. | Springer Verlag | 2014


    Control Strategies for Gasoline Particulate Filters

    Ulrey, Joseph / Van Nieuwstadt, Michiel | SAE Technical Papers | 2017


    Regeneration Strategies for Gasoline Particulate Filters

    Shah, Anil / Martin, Douglas / Serban, Emil et al. | SAE Technical Papers | 2019


    Lubricant-Derived Ash Impact on Gasoline Particulate Filter Performance

    Sappok, Alexander / Kamp, Carl Justin / Lambert, Christine et al. | SAE Technical Papers | 2016