The dual-fuel application using ethanol and diesel fuels can substantially improve the classical trade-off between oxides of nitrogen (NOx) and smoke, especially at moderate-to-high load conditions. However, at low engine load levels, the use of a low reactivity fuel in the dual-fuel application usually leads to increased incomplete combustion products that in turn result in a significant reduction of the engine thermal efficiency. In this work, engine tests are conducted on a high compression ratio, single cylinder dual-fuel engine that incorporates the diesel direct-injection and ethanol port-injection. Engine load levels are identified, at which, diesel combustion offers better efficiency than the dual-fuel combustion while attaining low NOx and smoke emissions. Thereafter, a cycle-to-cycle based closed-loop controller is implemented for the combustion phasing and engine load control in both the diesel and dual-fuel combustion regimes. The controller actively regulates the fuelling rates of both fuels and dynamically controls the injection timing of the diesel direct-injection. A mode switching scheme is developed and implemented in the closed-loop controller to switch between diesel and dual-fuel combustion modes for optimized emissions and efficiency, without compromising the combustion stability. The switching algorithm is validated through steady-state and transient engine tests with continuous measurements of fuel flow, engine load, NOx and PM emissions to demonstrate the effectiveness of balancing the efficiency and emissions. By applying the mode switching strategy in the dual-fuel engine, stable, efficient, and clean combustion is achieved from idle to full-load conditions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mode Switching to Improve Low Load Efficiency of an Ethanol-Diesel Dual-Fuel Engine


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Tjong, Jimi (Autor:in) / Zheng, Ming (Autor:in) / Divekar, Prasad (Autor:in) / Tan, Qingyuan (Autor:in) / Yanai, Tadanori (Autor:in) / Asad, Usman (Autor:in) / Chen, Xiang (Autor:in) / Han, Xiaoye (Autor:in)

    Kongress:

    WCX™ 17: SAE World Congress Experience ; 2017



    Erscheinungsdatum :

    2017-03-28




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Factors that improve the Performance of an Ethanol-Diesel Oil Dual-Fuel Engine

    Panchapakesan,N.R. / Gopalakrishnan,K.V. / Murthy,B.S. et al. | Kraftfahrwesen | 1977


    Hamilton dual-fuel diesel engine

    Engineering Index Backfile | 1949


    Fuel Injection Strategy for Clean Diesel Engine Using Ethanol Blended Diesel Fuel

    Mohammadi, Ali / Kee, Sung-Sub / Kakuta, Takaaki et al. | SAE Technical Papers | 2005


    Fuel injection strategy for clean diesel engine using ethanol blended diesel fuel

    Mohammadi,A. / Ishiyama,T. / Kakuta,T. et al. | Kraftfahrwesen | 2005


    Biogenous Ethanol: CO2 Savings and Operation in a Dual-Fuel Designed Diesel Engine

    Damyanov, Aleksandar Aleksandrov / Hofmann, Peter | SAE Technical Papers | 2019