In the auto industry, lightweight window designs are drawing more attention for improved gas mileage and reduced exhaust emission. Corning’s Gorilla® Glass used in laminate design enables more than 30% weight reduction compared to conventional soda-lime glass laminates. In addition, Gorilla® Glass hybrid laminates (which are a laminate construction of a thick soda-lime glass outer play, a middle polyvinyl butyral interlayer, and a thin Gorilla Glass inner ply) also show significantly improved toughness due to advanced ion-exchange technology that provides high-surface compression. However, the reduced mass also allows increased transmission of sound waves through the windshield into the vehicle cabin. A system-level measurement approach has always been employed to assess overall vehicle acoustic performance by measuring sound pressure levels (SPL) at the driver’s ears. The measured sound signals are usually a superimposition of a variety of noise sources and transmission paths. It is challenging to quantitatively isolate the impact of replacing a thick windshield with a thin windshield. A reverberation room measurement is another standard component-level testing approach but it is usually limited to flat glass evaluation. To enhance understanding of sound wave transmission through windshields, a 3D windshield acoustic model was developed using ANSYS Acoustics ACT. The model was validated for a 24″ x 24″ flat laminated panel with reverberation data. It was then extended for simulating a 3D production windshield with curved surface and tri-layer polyvinyl butyral (PVB) interlayer. The model has been employed to characterize windshield acoustic performance under either plane wave incidence or diffuse field. Through modeling simulation, an optimal inner layer glass thickness was identified at 1 mm which is able to maximally shift critical frequency further away from human being’s sensitive hearing range while maintaining reasonable sound transmission loss (STL) at damping control region. Windshield geometry was also evaluated and impact observed especially on transmission loss at spectra regions below the critical frequency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Acoustic Modeling for Three-Dimensional Lightweight Windshields


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Yu, Chao (Autor:in) / Bhatia, Vikram (Autor:in)

    Kongress:

    WCX World Congress Experience ; 2018



    Erscheinungsdatum :

    2018-04-03




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Design Considerations for Lightweight Windshields

    Khaleel, M.A. / Gulati, S.T. | SAE Technical Papers | 2001


    HEATABLE WINDSHIELDS

    MA ZHIXUN / POLCYN ADAM D / WAGNER ANDREW | Europäisches Patentamt | 2020

    Freier Zugriff

    Coming:Safer windshields

    Kraftfahrwesen | 1983



    HEATABLE WINDSHIELDS

    MA ZHIXUN / POLCYN ADAM / WAGNER ANDREW | Europäisches Patentamt | 2021

    Freier Zugriff