With ever tightening emission standards, the automotive industry is continuously seeking novel ways to improve the aftertreatment system (ATS). Exhaust treatment systems using diesel emission fluid (DEF), in conjunction with selective catalytic reduction (SCR) and diesel oxidation converters (DOC), have been gaining popularity in the heavy equipment industry. Spraying DEF (mixture of urea and water) into the exhaust flow can convert harmful NOx gases into N2 and H2O. Design of ATSs focuses on high evaporation rate and uniform mixing of ammonia at the entrance to the SCR catalyst. This study applied support vector regressor (SVR), a machine learning (ML) method to a database of computational fluid dynamics (CFD) simulations to develop a highly efficient mixer with high heat exchange characteristics. Over 500 mixer designs were evaluated using CFD and were then used to train the SVR model. The trained ML model was then used as a surrogate to the CFD and coupled with the genetic algorithm (GA), an optimization technique, to further refine the design parameters. The optimal design obtained from this methodology showed a remarkable performance improvement compared to the baseline.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Designing Next Generation Exhaust Aftertreatment Systems Using Machine Learning


    Weitere Titelangaben:

    Sae Int. J. Commer. Veh


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    2020-09-25


    Format / Umfang :

    6 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Advanced Diesel Particulate Filter Technologies for Next Generation Exhaust Aftertreatment Systems

    Heibel, Achim / Govindareddy, Mahesh / George, Sam et al. | SAE Technical Papers | 2020


    Diesel exhaust aftertreatment - advances for the next decade

    Davies,M.J. / Jorgensen,N. / Brear et al. | Kraftfahrwesen | 1992



    Diesel Exhaust Aftertreatment - Materials and Systems

    Williams, Jimmie L. / Cash, Thomas F. / Zink, Uwe H. | SAE Technical Papers | 2000