Kinematic accuracy of the robot end-effector is decreased by many uncertainties. In order to design and manufacture robots with high accuracy, it is essential to know the effects of these uncertainties on the motion of robots. Uncertainty analysis is a useful method which can estimate deviations from desired path in robots caused by uncertainties. This paper presents an applied formulation based on Direct Linearization Method (DLM), for 3D statistical uncertainty analysis of open- loop mechanisms and robots. The maximum normal and parallel components of the position error on the end-effector path are introduced. In this paper, uncertainty effects of both linear and angular variations in performance of spatial open-loop mechanisms and robots are considered. Based on the relations for the percent contributions of manufacturing variables, for the position error reduction, the tolerances that have the most significant effects on the commutated uncertainty zone of the end-effector position can be modified. The proposed method is illustrated using a spatial manipulator with three-revolute joints and verified with a Monte Carlo simulation method. Finally, normal and parallel distances to end-effector path are determined as error bands for all over range of motion. The results of applying this method demonstrate that estimating the position error in mechanisms and robots can be done efficiently and precisely.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Error Reduction in Spatial Robots Based on the Statistical Uncertainty Analysis


    Weitere Titelangaben:

    Sae Int. J. Mater. Manf
    Sae International Journal of Materials and Manufacturing


    Beteiligte:
    Hafezipour, M. (Autor:in) / Khodaygan, S. (Autor:in)

    Kongress:

    SAE 2015 World Congress & Exhibition ; 2015



    Erscheinungsdatum :

    2015-04-14


    Format / Umfang :

    8 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    On Sharing Spatial Data with Uncertainty Integration Amongst Multiple Robots Having Different Maps

    Ravankar, Abhijeet / Ravankar, Ankit A. / Hoshino, Yohei et al. | BASE

    Freier Zugriff

    Statistical Learning for Humanoid Robots

    Vijayakumar, S. / D Souza, A. / Shibata, T. et al. | British Library Online Contents | 2002


    Statistical Sample Size Determination for Uncertainty Quantification and Error Control in Validation of Simulation Experiments

    Doty, J. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2012