Creep groan is an annoying brake noise at very low speeds of the vehicle. In general, stick-slip between brake disk and brake pads is believed to be the most dominating vibration mechanism of creep groan phenomena. This paper will show by sophisticated measurement techniques that stick-slip and speed-dependent friction is an important trigger. However, the overall vibration is much more complex than stick-slip reproduced by simple conveying belt minimal models. It turns out that in typical brake systems of passenger cars, creep groan appears from 15 to 25 Hz as well as 60 to 100 Hz. The mechanism from 15 to 25 Hz is highly impulsive and “hard”. Transitions between stick and slip phases trigger coupled nonlinear vibrations of the complete brake and suspension system. From 60 to 100 Hz, the vibrations show a more harmonic-like and “soft” signature, caused mainly by a speed-dependent friction behavior. Basically, the growth of self-excited vibrations is stimulated by flexibilities in the suspension bushings as well as elastic deformations of suspension parts, wheel and tire. For practical vehicle operating conditions, the frequency range from 60 to100 Hz is the most relevant one. The 15 to 25 Hz nonlinear vibrations are frequently not detected, because these creep groan phenomena require high brake pressures. This fact often leads to inappropriate model reductions, focusing on the pads-disk subsystem for a simulation of just one vibration state. To completely address the physical nature of the vibrating system, large-scale models of the entire suspension system - including wheel, brake, link arms and bushings - are used within this work. Thus, existence and properties of bifurcating vibration states are revealed and the study of “hard” and “soft” creep groan characteristics is possible.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Characterization of Brake Creep Groan Vibrations


    Weitere Titelangaben:

    Sae Int. J. Adv. and Curr. Prac. in Mobility


    Beteiligte:

    Kongress:

    11th International Styrian Noise, Vibration & Harshness Congress: The European Automotive Noise Conference ; 2020



    Erscheinungsdatum :

    2020-09-30


    Format / Umfang :

    10 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Mechanisms of brake creep groan

    Brecht, J. / Hoffrichter, W. / Dohle, A. | Tema Archiv | 1997


    Mechanisms of Brake Creep Groan

    Dohle, Achim / Brecht, Jörg / Hoffrichter, Wolfgang | SAE Technical Papers | 1997


    Mechanisms of brake creep groan

    Brecht,J. / Hoffrichter,W. / Dohle,A. et al. | Kraftfahrwesen | 1997


    Mechanisms of Brake Creep Groan

    Brecht, J. / Hoffrichter, W. / Dohle, A. et al. | British Library Conference Proceedings | 1997


    Research for Brake Creep Groan Noise with Dynamometer

    Jung, T. / Chung, S. / Society of Automotive Engineers | British Library Conference Proceedings | 2012