A recent Gartner Dataquest study predicts that the total worldwide automotive semiconductor market will grow from $20.1 billion in 2007 to $25.9 billion by 2010. The study also predicts that revenue from automotive usage of FPGAs will triple to approximately $312 million during that same period[1].Many of these FPGAs will be deployed in safety applications such as back-up cameras, lane departure warning systems, blind-spot warning system, and adaptive cruise control. FPGAs will also be deployed in next-generation engine electronics, emissions control, navigation, and entertainment applications.Automotive systems engineers are adept at using Model-Based Design for implementing some of these embedded applications on DSPs and microcontrollers. Many of these engineers are new to FPGA design and waking up to a fragmented workflow that is making it harder to meet time-to-market and cost objectives.For example, engineers who are migrating their systems designs from DSPs to FPGAs are discovering that additional verification steps such as bit-true, cycle-accurate simulations are required to ensure that the FPGA functions the same as the system specification. This is a time-consuming and error-prone activity involving file exchanges between the system designer and the FPGA designer. Geographically distributed teams face an even bigger challenge since the system engineer and FPGA designer may be many miles away from each other.Common applications for FPGAs in automotive industry include: This paper illustrates how Model-Based Design integrates the world of system designers, FPGA designers, and verification engineers to increase productivity and produce correct-by-construction designs that match the system specification. Using the concept of executable design specification, this paper discusses how Model-Based Design streamlines both design and verification of FPGAs for an engine control application.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Using Model-Based Design to Accelerate FPGA Development for Automotive Applications


    Weitere Titelangaben:

    Sae International Journal of Passenger Cars- Electronic and Electrical Systems
    Sae Int. J. Passeng. Cars – Electron. Electr. Syst


    Beteiligte:
    Sharma, Sudhir (Autor:in) / Chen, Wang (Autor:in)

    Kongress:

    SAE World Congress & Exhibition ; 2009



    Erscheinungsdatum :

    2009-04-20


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Accelerate testing for automotive applications

    Deutsch, Alain / Wissing, Klaus | Tema Archiv | 2006


    FPGA Considerations for Automotive Applications

    Young, Bruce / Winters, Frank / Patton, Jim et al. | SAE Technical Papers | 2006


    FPGA considerations for automotive applications

    Gabrick,M. / Nicholson,R. / Winters,F. et al. | Kraftfahrwesen | 2006



    FPGA-Based Development for Sophisticated Automotive Embedded Safety Critical System

    Nguyen, T. / Wooters, S. / Society of Automotive Engineers | British Library Conference Proceedings | 2014