Mitigation of urea deposit formation and improved ammonia production at low exhaust temperatures continues to be one of the most significant challenges for current generation selective catalytic reduction (SCR) aftertreatment systems. Various technologies have been devised to alleviate these issues including: use of alternative reductant sources, and thermal treatment of the urea-water solution (UWS) pre-injection. The objective of this work was to expand the knowledge base of a potential third option, which entails chemical modification of UWS by addition of a titanium-based urea/isocyanic acid (HNCO) decomposition catalysts and/or surfactant to the fluid. Physical solid mixtures of urea with varying concentrations of ammonium titanyl oxalate (ATO), oxalic acid, and titanium dioxide (TiO2) were generated, and the differences in NH3 and CO2 produced upon thermal decomposition were quantified. It was found that addition of 2.0 mol % ATO to urea increased CO2 production by 821 % and NH3 production by 96 % at temperatures ≤ 215 °C, indicating significantly enhanced hydrolysis of HNCO. Conversely, it was demonstrated that addition of oxalic acid or TiO2 to urea exhibited little effect on NH3 and CO2 production, indicating both the importance of titanium in the mixture and adequate catalyst-substrate contact. Previous work by the authors demonstrated that addition of ATO to UWS did indeed result in decreased deposit formation in the exhaust system when compared to conventional UWS, and the extent of deposit reduction could be further enhanced by addition of surfactant to the solution. In this work, six distinct surfactants were added to UWS both with and without ATO, and the effect on deposit formation was quantified. In all cases, addition of both surfactant and ATO resulted in superior deposit mitigation when compared to UWS treated with ATO or surfactant individually. Finally, various ammonium peroxo-hydroxo titanium coordination complexes were synthesized and evaluated for catalytic urea decomposition using TGA-FTIR and compared against the observed activity of ATO.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Investigation into Low-Temperature Urea-Water Solution Decomposition by Addition of Titanium-Based Isocyanic Acid Hydrolysis Catalyst and Surfactant


    Weitere Titelangaben:

    Sae Int. J. Adv. and Curr. Prac. in Mobility


    Beteiligte:
    Henry, Cary (Autor:in) / Wright, Nolan (Autor:in) / Hartley, Ryan (Autor:in) / Tonzetich, Zachary (Autor:in)

    Kongress:

    WCX SAE World Congress Experience ; 2020



    Erscheinungsdatum :

    2020-04-14


    Format / Umfang :

    18 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Isocyanic acid hydrolysis and ammonia-SCR reaction over hydrothermally aged Cu-ZSM5

    Obuchi, Akira / Tsuchida, Jun / Tanaka, Kotaro et al. | SAE Technical Papers | 2019


    Isocyanic acid and ammonia in vehicle emissions

    Suarez-Bertoa, R | Online Contents | 2016


    Isocyanic acid and ammonia in vehicle emissions

    Suarez-Bertoa, R. / Astorga, C. | Elsevier | 2016



    Low temperature urea decomposition and SCR performance

    Sluder,C.S. / Storey,J.M. / Lewis,S.A. et al. | Kraftfahrwesen | 2005