The automotive industry is heading towards the path of autonomy with the development of autonomous vehicles. An autonomous vehicle consists of two main components. The first is the software which is responsible for the decision-making capabilities of the system. The second is the hardware which encompasses all aspects of the physical vehicle which are responsible for vehicle motion such as the engine, brakes and steering subsystems along with their corresponding controls. This component forms the basis of the autonomous vehicle platform. For SAE Level 4 autonomous vehicles, where an automated driving system is responsible for all the dynamics driving tasks including the fallback driving performance in case of system faults, redundant mechanical systems and controls are required as part of the autonomous vehicle platform since the driver is completely out of the loop with respect to driving. As in-vehicle testing for autonomous vehicles will be considered expensive, time-consuming, and unsafe due to the number of scenarios and driven kilometers required for validation, a simulation platform, which can provide a controlled and consistent testing environment, is required for rapid prototyping and testing of the hardware components of the autonomous vehicle. This paper focuses on a powertrain and chassis hardware-in-the-loop (HIL) simulation of the autonomous vehicle platform and the correlation of the performance of the corresponding subsystems with those of the actual autonomous vehicle. This setup includes powertrain controllers and actuators, redundant brakes and steering controllers, alongside full brake hydraulics hardware. 2017 Ford Fusion Hybrid was used as the vehicle platform for simulation. The simulation of other subsystem plants and controllers was achieved by using a real-time CarSim-Simulink co-simulation environment representative of the 2017 Ford Fusion Hybrid through a dSPACE HIL simulator.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Powertrain and Chassis Hardware-in-the-Loop (HIL) Simulation of Autonomous Vehicle Platform


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Joshi, Adit (Autor:in)

    Kongress:

    Intelligent and Connected Vehicles Symposium ; 2017



    Erscheinungsdatum :

    2017-09-23




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Integrated vehicle systems diagnostics - powertrain and chassis

    Walters, W.L. / Thielan, M.J. / Wright, D.D. | Tema Archiv | 1986


    Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

    Mayyas, AbdelRaouf / Haque, Imtiaz / Pisu, Pierluigi et al. | SAE Technical Papers | 2013


    Hybrid Electric Vehicle Powertrain Controller Development Using Hardware in the Loop Simulation

    Wu, H. / Zhang, H. / Motevalli, V. et al. | British Library Conference Proceedings | 2013


    Integrated Vehicle Systems Diagnostics - Powertrain and Chassis

    Thielan,M.J. / Walters,W.L. / Wright,D.D. et al. | Kraftfahrwesen | 1986