The range of Plug-In Electric Vehicles (EVs) is highly influenced by the electric power consumed by various sub systems, the major part of the power being used for vehicle climate control strategies in order to ensure an acceptable level of thermal comfort for the passengers. Driving range decreases with low temperatures in particular because cabin heating system requires significant amount of electric power. Range also decreases with high ambient temperatures because of the air conditioning system with electrically-driven compressor. Both thermal systems reduce EV driving range under real life operating cycles, which can be a barrier against market penetration. The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature. In this paper, an integrated 1D/3D CFD approach is proposed to evaluate sensitivity of various vehicle climate control strategies (Cabin cool down) impact on battery energy state of charge and consequent driving range. Additionally, effects of ambient temperature and choice of glazing materials on climate control performance and its impact on driving range is studied.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Numerical Investigations of Vehicle Climate Control Strategies Impact on Plug-In Electrical Vehicle Battery Range


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    WCX™ 17: SAE World Congress Experience ; 2017



    Erscheinungsdatum :

    2017-03-28




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Numerical Investigations of Vehicle Climate Control Strategies Impact on Plug-In Electrical Vehicle Battery Range

    Kandasamy, Neelakandan / Whelan, Steve | British Library Conference Proceedings | 2017


    Plug-in hybrid electrical commercial vehicle: Energy flow control strategies

    Agostini, S. / Cheli, F. / Mapelli, F. et al. | Tema Archiv | 2012


    Plug Inlet for Storing Electrical Vehicle Plug

    RAIKH MICHAEL | Europäisches Patentamt | 2024

    Freier Zugriff

    Plug inlet for storing electrical vehicle plug

    RAIKH MICHAEL | Europäisches Patentamt | 2020

    Freier Zugriff

    Plug inlet for storing electrical vehicle plug

    RAIKH MICHAEL | Europäisches Patentamt | 2024

    Freier Zugriff