Commercial vehicles require advanced engine and aftertreatment (AT) systems to meet upcoming nitrogen oxides (NOx) and carbon dioxide (CO2) regulations. This article focuses on the development and calibration of a model-based controller (MBC) for an advanced diesel AT system. The MBC was first applied to a standard AT system including a diesel particulate filter (DPF) and selective catalytic reduction (SCR) catalyst. Next, a light-off SCR (LO-SCR) was added upstream of the standard AT system. The MBC was optimized for both catalysts for a production engine where the diesel exhaust fluid (DEF) was unheated for both SCRs. This research shows that the tailpipe (TP) NOx could be reduced by using MBC on both catalysts. The net result was increased NOx conversion efficiency by one percentage point on both the LO-SCR and the primary SCR. The CO2 emissions were slightly reduced, but this effect was not significant. Finally, the MBC was used with a final setup representative of future AT systems which included standard insulation on the catalysts and optimal DEF dosing controls. This final configuration resulted in an improved NOx and CO2 such that the composite Federal Test Procedure (FTP) NOx was 0.060 g/hp-hr and the composite FTP CO2 was 508.5 g/hp-hr. The article details this cycle along with the low-load cycle (LLC) and beverage cycle. More technologies are required to meet the future California Air Resources Board (CARB) 2027 standard, which will be shown in future work.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Application of Model-Based Controller on a Heavy-Duty Dual Selective Catalytic Reduction Aftertreatment


    Weitere Titelangaben:

    Sae Int. J. Engines


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    2023-03-08


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Selective Catalytic Reduction with Urea - The most Effective Nitrous Oxide Aftertreatment for Light-Duty Diesel Engines

    Enderle, C. / Breitbach, H. / Paule, M. et al. | British Library Conference Proceedings | 2005


    The Application of Solid Selective Catalytic Reduction on Heavy-Duty Diesel Engine

    Li, Jiaqiang / Ge, Yunshan / He, Chao et al. | British Library Conference Proceedings | 2017


    The Application of Solid Selective Catalytic Reduction on Heavy-Duty Diesel Engine

    He, Chao / Tan, Jianwei / Li, Jiaqiang et al. | SAE Technical Papers | 2017