The optimum driving dynamics can be achieved only when the tire forces on all four wheels and in all three coordinate directions are monitored and controlled precisely. This advanced level of control is possible only when a vehicle is equipped with several active chassis control systems that are networked together in an integrated fashion. To investigate such capabilities, an electric vehicle model has been developed with four direct-drive in-wheel motors and an active steering system. Using this vehicle model, an advanced slip control system, an advanced torque vectoring controller, and a genetic fuzzy active steering controller have been developed previously. This paper investigates whether the integration of these stability control systems enhances the performance of the vehicle in terms of handling, stability, path-following, and longitudinal dynamics. An integrated approach is introduced that distributes the required control effort between the in-wheel motors and the active steering system. Several test maneuvers are simulated to demonstrate the performance and effectiveness of the integrated control approach, and the results are compared to those obtained using each controller individually. Finally, the integrated controller is implemented in a hardware- and operator-in-the-loop driving simulator to further evaluate its effectiveness.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Development of an Integrated Control Strategy Consisting of an Advanced Torque Vectoring Controller and a Genetic Fuzzy Active Steering Controller


    Weitere Titelangaben:

    Sae International Journal of Passenger Cars- Electronic and Electrical Systems
    Sae Int. J. Passeng. Cars – Electron. Electr. Syst


    Beteiligte:
    McPhee, John (Autor:in) / Jalali, Kiumars (Autor:in) / Lambert, Steve (Autor:in) / Uchida, Thomas (Autor:in)

    Kongress:

    SAE 2013 World Congress & Exhibition ; 2013



    Erscheinungsdatum :

    2013-04-08


    Format / Umfang :

    19 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Development of Torque Vectoring Controller Tuned with Neural Networks

    Beliautsou, Viktar / Fedorova, Aleksandra | Springer Verlag | 2022



    Adaptive integrated vehicle control using active front steering and rear torque vectoring

    Bianchi, D. / Borri, A. / Burgio, G. et al. | Tema Archiv | 2009


    Adaptive integrated vehicle control using active front steering and rear torque vectoring

    Bianchi,D. / Borri,A. / di Benedetto,M.D. et al. | Kraftfahrwesen | 2010


    Self-adaptive Torque Vectoring Controller Using Reinforcement Learning

    Taherian, Shayan / Kuutti, Sampo / Visca, Marco et al. | IEEE | 2021