The development of a future hydrogen energy economy will require the development of several hydrogen market and industry segments including a hydrogen based commercial freight transportation ecosystem. For a sustainable freight transportation ecosystem, the supporting fueling infrastructure and the associated vehicle powertrains making use of hydrogen fuel will need to be co-established. This paper develops a long-term plan for refueling infrastructure deployment using the OR-AGENT (Optimal Regional Architecture Generation for Electrified National Transportation) tool developed at the Oak Ridge National Laboratory, which has been used to optimize the hydrogen refueling infrastructure requirements on the I-75 corridor for heavy duty (HD) fuel cell electric commercial vehicles (FCEV). This constraint-based optimization model considers existing fueling locations, regional specific vehicle fuel economy and weight, vehicle origin and destination (OD), vehicle volume by class and infrastructure costs to characterize in-mission refueling requirements for a given freight corridor. The authors applied this framework to determine the ideal long term public access locations for hydrogen refueling (constrained by existing fueling stations and dispensing technology), the minimal viable cost to deploy sufficient hydrogen fuel dispensers, and associated equipment, to accommodate a growing population of hydrogen fuel cell trucks. The framework discussed in this paper can be expanded and applied to additional electrified powertrains as well as a larger interstate system, expanded regional corridor, or other transportation networks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimizing Long Term Hydrogen Fueling Infrastructure Plans on Freight Corridors for Heavy Duty Fuel Cell Electric Vehicles


    Weitere Titelangaben:

    Sae Int. J. Adv. and Curr. Prac. in Mobility


    Beteiligte:
    Siekmann, Adam (Autor:in) / Sujan, Vivek (Autor:in)

    Kongress:

    WCX SAE World Congress Experience ; 2023



    Erscheinungsdatum :

    2023-04-11


    Format / Umfang :

    16 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Optimizing Hydrogen Fueling Infrastructure Plans on Freight Corridors for Heavy-Duty Fuel Cell Electric Vehicles

    Siekmann, Adam / Xie, Fei / Uddin, Majbah et al. | SAE Technical Papers | 2023


    Designing Dynamic Wireless Power Transfer Corridors for Heavy Duty Battery Electric Commercial Freight Vehicles

    Sujan, Vivek Anand / Siekmann, Adam / Tennille, Sarah et al. | British Library Conference Proceedings | 2023


    Designing Dynamic Wireless Power Transfer Corridors for Heavy Duty Battery Electric Commercial Freight Vehicles

    Siekmann, Adam / Tsybina, Eve / Tennille, Sarah et al. | SAE Technical Papers | 2023


    Designing Dynamic Wireless Power Transfer Corridors for Heavy Duty Battery Electric Commercial Freight Vehicles

    Sujan, Vivek Anand / Siekmann, Adam / Tennille, Sarah et al. | British Library Conference Proceedings | 2023