Silicon represents an interesting material to fabricate low‐cost and relatively simple and high‐efficient solar cells in the low and medium concentration range. In this paper, we discuss a novel cell scheme conceived for concentrating photovoltaic, named emitter wrap through with deep grooved base (EWT‐DGB), and compare it with the simpler passivated emitter solar cell. Both cells have been fabricated by means of a complementary metal–oxide–semiconductor‐compatible process in our laboratory. The experimental characterization of both cells is reported in the range 1–200 suns in terms of conversion efficiency, open circuit voltage, short circuit current density and fill factor. In particular, for the EWT‐DGB solar cells, we obtain an encouraging 21.4% maximum conversion efficiency at 44 suns. By using a calibrated finite‐element numerical electro‐optical simulation tool, validated by a comparison with experimental data, we study the potentials of the two architectures for concentrated light conditions considering possible realistic improvements with respect to the fabricated devices. We compare the solar cell figures of merit with those of the state‐of‐the‐art silicon back‐contact back‐junction solar cell holding the conversion efficiency record for concentrator photovoltaic silicon. Simulation results predict a 24.8% efficiency at 50 suns for the EWT‐DGB cell and up to 23.9% at 100 suns for the passivated emitter solar cell, thus confirming the good potential of the proposed architectures for low to medium light concentration. Finally, simulations are exploited to provide additional analysis of the EWT‐DGB scheme under concentrated light. Copyright © 2017 John Wiley & Sons, Ltd. We have discussed two fabricated and characterized options for Si solar cells for operation under concentrated light: the passivated emitter solar cell and the emitter wrap through with deep grooved base solar cells. The experimental characterization is reported in the range 1–200 suns showing an encouraging maximum conversion efficiency. Advanced numerical simulations under feasible realistic improvements in terms of material and process quality result in an efficiency close to 24% at 100 suns and to 25% at 50 suns for passivated emitter solar cell and emitter wrap through with deep grooved base, respectively.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Analysis of the EWT‐DGB solar cell at low and medium concentration and comparison with a PESC architecture



    Erschienen in:

    Erscheinungsdatum :

    2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    53.36 Energiedirektumwandler, elektrische Energiespeicher