AbstractThe most recent tendencies in pavement engineering design are directed to the return of the use of fundamental mechanical principles of engineering to predict design life through the concept of damage. Damage is associated with the relation between (1) the number of repetitions a material can resist until failure and (2) the predicted repetitions the designer is expecting during a period of time. Generally, mechanical responses as strains, stresses, and displacements are used to calculate the number of repetitions until a specific failure. In rigid pavements, there are analytical solutions that range from simple Westergaard’s closed-form formulas to complex numerical solutions (as discrete-element methods and finite-element methods). This paper describes work done to develop an additional option in the middle: models calibrated to have the simplicity of the closed-form formulas and the accuracy of the finite-element methodology. Those models were then included in a graphical user interface, which will be used as the structural response engine in local mechanistic-empirical (M-E) design software.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Models to Predict Mechanical Responses in Rigid Pavements




    Erscheinungsdatum :

    2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch


    Schlagwörter :

    Klassifikation :

    BKL:    56.24 Straßenbau / 74.75 / 56.24 / 55.84 / 74.75 Verkehrsplanung, Verkehrspolitik / 55.84 Straßenverkehr
    Lokalklassifikation TIB:    770/7000



    Models to Predict Mechanical Responses in Rigid Pavements

    Quirós-Orozco, Ricardo J. / Loria-Salazar, Luis G. / Leiva-Padilla, Paulina | ASCE | 2017


    Deflection Response Models for Cracked Rigid Pavements

    Vepa, T. S. / George, K. P. | British Library Online Contents | 1997