Many production and commercial unstructured computational fluid dynamics codes provide no better than second-order spatial accuracy. Unlike structured-grid procedures, in which there is an implied structured connectivity between the neighboring grid points, for unstructured grids, it is more difficult to compute higher derivatives due to a lack of explicit connectivity beyond the first neighboring cells. In this study, a modular high-order scheme with low-dissipation flux-difference splitting is developed that can be integrated into the existing computational fluid dynamics codes for use in improving the solution accuracy and to enable better prediction of complex physics and noise mechanisms and propagation. The salient features of the present approach include 1) high-resolution schemes with physics-based low-dissipation flux-difference splitting, 2) low-memory requirements and small overhead, and 3) modular structure for easy integration into an existing computational fluid dynamics code. Initially, four different aeroacoustic benchmark problems are investigated to assess the accuracy of existing convective schemes in FUN3D. A third-order U-MUSCL scheme using a successive-differentiation method is derived and implemented in FUN3D. Verification studies of the acoustic benchmark problems show that the new scheme can achieve up to fourth-order accuracy. Application of the high-order scheme to several acoustic transport and transition-to-turbulence problems demonstrates that, with just 10% overhead, the solution accuracy can be dramatically improved by as much as a factor of 8. Studies also demonstrate a considerably better agreement with experimental data when using the new third-order U-MUSCL scheme.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Development of Vertex-Centered High-Order Schemes and Implementation in FUN3D


    Beteiligte:

    Erschienen in:

    AIAA journal ; 54 , 12


    Erscheinungsdatum :

    2016




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch


    Schlagwörter :

    Klassifikation :

    BKL:    55.50 Luftfahrzeugtechnik / 55.60 Raumfahrttechnik / 55.60 / 50.93 / 55.50 / 50.93 Weltraumforschung
    Lokalklassifikation TIB:    770/7040